CS 59300 - Algorithms for Data Science
Classical and Quantum approaches

Lecture 4 (09/09)
Tensor Methods (IV)

https:Ilruizhezhang.comlcoui’se fall 2025.html

Slides are based on Sitan Chen’s lecture



https://ruizhezhang.com/course_fall_2025.html

Recap

We've seen several tensor decomposition algorithms:
- Jennrich’s algorithm (simultaneous diagonalization)
- Tensor power method

- Alternating least squares

- Flattening-based higher-order tensor decomposition

However, the equations for tensors are too long and involves too many indices and )’s, e.g.,

Toltbc — Z Z A (ui)a’(ui)b’(ui)c’Wa’aWb’ch’c

a'b'c! i

Today: we’ll see a diagrammatic language for tensors---tensor networks

September 10, 2025 1



Today’s plan

Tensor diagram notations

Tensor networks

Quantum application: classical simulation of qguantum circuits

Tensor network algorithms
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Tensor diagrams
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Tensor diagram rule #1

Tensors are notated by shapes (usually filled or shaded), and tensor indices are notated by lines (or
“legs”) emanating from these shapes.

vector Uj ?

matrix Mij i —@—

3-index .
.. k
tensor TZJ k ! '
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Tensor diagram rule #2

Connecting two index lines implies a contraction, or summation over the connected indices.
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Tensor diagram rule #2

Connecting two index lines implies a contraction, or summation over the connected indices.

(can also involve loops)

=) wu =P

!

ZAU ;= tr[AB]

Z TeppaWija partial trace
a,B
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Diagrammatic proof of the trace identity

= tr[BA]
rlABC]| = tr|CAB]

000 q"—’P 000




Tensor products
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Grouping indices

Oz
O]
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Grouping indices

-
i°] _

vec(4)
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Splitting indices




Some special notations

o

identity diagonal matrix isometry

—H>— - —>< -

SVD A =U3VT

_‘_ _

September 10, 2025 12




Tensor networks

Tensor networks are factorizations of very large tensors into networks of smaller tensors

2 AiaBajpCpiyDyeoEoms Fsn = Tijkimn
afy0é

Q: Does the order of contractions matter?

A: No, mathematically. Yes, computationally!
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Computational costs of tensor contraction

Contraction path 1:

900 = -OQ@ == Q@ o
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Computational costs of tensor contraction

Fact. The computational cost for contracting an edge with dimension d is:

o(d. [ dk)

k:open edges

0(d®)
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Computational costs of tensor contraction

Fact. The computational cost for contracting an edge with dimension d is:

o(d. [ dk)

k:open edges

= (YlyY)

n tensors
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Contracting a ladder: left-to-right then top-to-
bottom

total cost = 0(d™)
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Contracting a ladder: staggered

x3d total cost = O(ny3d) « d"
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Tensor network contraction is hard

Theorem. Tensor network contraction is #P-complete.

Proof.

Encode #SAT as a tensor network: its contraction equals the number of satisfying assignments

Ve~ {01} mmm g N i € 03T e0

xe€{0,1}"

-, -y
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Tensor network contraction is hard

Theorem. Tensor network contraction is #P-complete.

Example: f(x) = (x; Vx3 Vx) A(xy VX3)
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Tensor network contraction is hard

Theorem. Tensor network contraction is #P-complete.

How to count the solutions?
1
Let |+) = |0) + |1) I+ =(7)

1
1 = (10) + 1187 = (g 1pal)
) ® 14 = 100) + [01) + 10) + |11) OO0 0O

Te(|+), ..., |+),11)) = #satisfiable assignments for f

If there exists a polynomial time algorithm for tensor contraction, then there is also a polynomial time
algorithm for #SAT, which is #P-complete
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Contraction complexity

A tensor network can be described as an undirected graph G = (V,E):

Vertices <= tensors, edges < indices

Contraction of an edge e removes e and replaces its end vertices (or vertex) with a single vertex

A contraction ordering m is an ordering of all edges:
{T[l, Ty, ..., T[lEl} =F

The complexity of  is the maximum degree of a merged vertex during the contraction process
Contraction complexity of G, denoted by cc(G), is the minimum complexity of a contraction ordering
The cost of contracting the TN is ~ d0(cc(®) o exp (O(CC(G))) (for constant dimensions)

How to determine cc(G)?
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Contraction complexity: basic properties

Claim. It holds that
A(G)—1<cc(G) <|E|—-1

where A(G) is the maximum degree of a vertex in G

Proof.

Since a merged vertex cannot be connected to more than |E| — 1 edges, so cc(G) < |E| — 1

When any edge incident to a vertex of degree A(G) is removed, the resulting merged vertex is incident to
at least A(G) — 1 edges. Thus, A(G) — 1 < cc(G)
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Contraction complexity

Theorem.

Given a tensor network with N tensors and underlying graph G, the contraction time is
O(N exp(tw(G)))

where tw(G) is the tree-width of G (assuming all indices are of O(1) dimensions)

Tree decomposition is a way to ‘
measure how tree-like a graph is
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Tree decomposition

How to transform this graph to a tree?

Trivial: Group of vertices

@ -

Slightly non-trivial:
We require:

Does not reflect the structure of Ve = (i,j) € E, there exists a bag in
the original graph the tree that contains both i and j
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Tree decomposition

How to transform this graph to a tree?

Trivial;

max |L, | = 4
Q @ Uu€eT | ul

Check-list

. Tree?

I . Contains all vertices?

Contains all edges?

Another choice:

max L, =3 .+ Minimize the max bag size
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Tree decomposition

How to transform this graph to a tree?

Smaller bag?

forget the /

vertex b

d X

Check-list

Another choice:

max |L,| =3 .
ueT
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Contains all vertices?
Contains all edges?

Minimize the max bag size



Tree decomposition

A tree decomposition of a graph G = (V,E) is a tree of N nodes uy, ..., Uy, with a set Lui cVl
corresponding to each node u;, such that:

1. Vertex coverage: every vertex of G belongs to at least one set
2. Edge coverage: for every edge in G, there is a set containing both its endpoints

3. Consistency: for every vertex v in G, the set of bags containing v induces a connected subgraph
Formally, if v € L,,, N Luj, then v € Ly, forall nodes u; on the u; - u; path

The width of a tree decomposition is the maximum size of a bag

The tree-width of a graph G is the minimum width of any tree decomposition of G minus one
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Tree decomposition

Tree has tree-width one:
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Contraction complexity

Theorem (Markov-Shi, 2008).

Given a tensor network with N tensors and underlying graph G, the contraction time is
O(N exp(tw(G)))

where tw(G) is the tree-width of G

Proof strategy:
1. Prove that cc(G) = tw(G*), where G* is the line graph of G

2. Use tw(G) to bound tw(G*)
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Line graph

The line graph of G = (V, E), denoted as G*, has vertex set V(G*) = E, and edge set
E(G*) ={(es,e;):eq,e, € Eande; Ne, # @}

September 10, 2025 31



Contraction complexity equals tree-width

Proposition.

Forany graph G = (V,E), cc(G) = tw(G™). Furthermore, given a tree decomposition of G* of
width d, there is a deterministic algorithm that outputs a contraction ordering  with cc(m) < d in
polynomial time.

Proof ideas:

When we contract an edge e € E, it corresponds to removing a vertex in G*

G G*
- - X
—) m—)
e |
Clique
degs(u) = degg-(e)
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Contraction complexity equals tree-width

Proposition.

Forany graph G = (V,E), cc(G) = tw(G™). Furthermore, given a tree decomposition of G* of
width d, there is a deterministic algorithm that outputs a contraction ordering  with cc(m) < d in
polynomial time.

Proof ideas:

When we contract an edge e € E, it corresponds to removing a vertex in G*, and connect its neighbors
as a clique

The degree of the merged vertex in G = the degree of e in G*
These operations exactly correspond to the elimination width (or induced width) of G*

Graph theory tells that elimination width = tree-width
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Tree-width of G and G~

Lemma. Forany graph G of maximum degree A(G),
(tw(G) — 1)/2 <tw(G™) < AG)(tw(G) +1) + 1

So, for a bounded-degree graph G, tw(G) = tw(G*)

How to find the tree decomposition?

Robertson-Seymour: There is a deterministic algorithm that given a graph G outputs a tree

decomposition of G of width O (tw(G)) in time |V [ exp (O(tw(G))).
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Tensor network contraction algorithm

1.  Apply the Robertson-Seymour algorithm to compute a tree decomposition
2. Find the contraction ordering  using the proposition

3. Contract the tensor network according to

The first and the third steps take NOo@ exp (O(tW(G))) time, and the second step is cheap
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Application: Quantum circuit simulation
.., ==

= mim =

o —il—l— =
L | | TP | | [l J 1 11 (B | J L J | |
cycle 1 cycle 2  cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle n

Theorem.

Let C be a quantum circuit with T gates and whose underlying circuit graph is G.-. Then C can be simulated

deterministically in time T9Vexp (O(tw(GC))).
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Google’s supremacy experiment
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Tensor network algorithms



Matrix product states (MPS) / tensor trains

visible dimension
How to use express a large tensor using as few bits as possible?

!!!!!! !!!!!!m

® parameters < 6x%d parameters

Tijklmn = §

a4,...,q5

bond dimension

%

o000 000

Oz 2 2 &2
Cost: O(Ny?)
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Inner product of two MPSs

2D = 666060 ...

ATAZ AR AR AS AT ladder TN

YEEEE "
( W ] = O-CO)-0O)-C0)-0)-0)

Cost: O(Ny3d)




Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:

A A =1 vne[N=1]
> (i) '4;

ie[d]
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor
The MPS form is not unique

(Left) canonical form:

= ) (Al 4k) = Tl

i€eld]
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Symmetry in MPS

Inserting invertible matrices X and X' does not change the whole tensor

The MPS form is not unique

(Right) canonical form:

September 10, 2025
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Symmetry in MPS

- Inserting invertible matrices X and X’ does not change the whole tensor
- The MPS form is not unique

(Center) canonical form:

\ J \

Y Y
left canonical right canonical
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Canonicalize an MPS

Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

0006060

_@7 decomposmon [: ixo. — t oS ‘_é__

A B
5, Y é7
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Canonicalize an MPS

Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

Short answer: QR! é)__é__é_‘_‘
QR
é é Grouplng e decomposmon

dy X x

o
T[>__’_d>7 —[>_ = Q;Z B} =Q; Vi€ [d]
B, Q4

Splitting d d
=0t =) a0, = ) (B)"Bi
. i=1 i=1
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Canonicalize an MPS

Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

| | ‘ ‘ !

Apply the same procedure from right to left to make the MPS right canonical

Short answer: QR!

For center canonical, we left-canonicalize the first half and right-canonicalize the second half

? | | | |
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Center-canonicalize an MPS

For center canonical form, we left-canonicalize the first half and right-canonicalize the second half
I I |

Grouplng \ :

¥

A\ Right canonical form will

Y be preserved
[ (homework)

As in the left-canonical case,
this site is left-canonical

Splitting
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Center-canonicalize an MPS

For center canonical form, we left-canonicalize the first half and right-canonicalize the second half

|

A
. Grouplng ' [ : : E l .
o

A\ Right canonical form will

Y be preserved
[ (homework)

As in the left-canonical case,
this site is left-canonical

Splitting
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DMRG: setup

We want to find the minimum eigenvalue of a huge matrix H (say 2V-by-2")
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DMRG: setup

We want to find the minimum eigenvalue of a huge matrix H (say 2V-by-2")
Assumptions:
H has a “low-rank” representation; more formally, H is a matrix product operator (MPO)

The minimum eigenvector can also be (approximately) represented as an MPS
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DMRG: setup

How to solve this non-linear optimization problem?

arg min 00000

O-O-0-0-0O
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DMRG: algorithm

Core idea: alternating minimization!

arg min

D =
— s

¢ o9
H 66

_.
_’

e

OO |OL1HO

i

-0

P
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DMRG: algorithm

Core idea: alternating minimization!
* Low-dimensional (2x?-dim) eigenvalue problem

9?9—9—9

arg min

M ::m

$o
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DMRG: algorithm

Core idea: alternating minimization!
* Low-dimensional (2y?-dim) eigenvalue problem

left sweep + right sweep + left sweep + right sweep + -+ (until converge)

¢-0-9-9-9 Q
S & i 5

& & & &
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DMRG: applications

- This is a purely heuristic approach, but super powerful in practice!

September 10, 2025

Density matrix formulation for guantum renormalization

groups

SR White - Physical review letters, 1992

A generalization of the numerical renormalization-group procedure used first by
Wilson for the Kondo problem is presented. It is shown that this formulation is
optimal in a certain sense. As a demonstration of the effectiveness of this
approach, results from numerical real-space renormalization-group calculations
for Helsenberg.shabs.aisasascnted.

7 P9 Cite\ Cited by 9582 JRelated articles  All 8 versions

[PDF] aps.org >

DMRG
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DMRG: applications

This is a purely heuristic approach, but super powerful in practice!

Widely used in quantum many-body physics and quantum chemistry

Quantum language:

> H:the Hamiltonian, which describes the dynamics of a physical system
> The minimum eigenvalue: ground state energy
> The minimum eigenvector: ground state

> These capture key properties of the system at very low temperature
- When DMRG is effective?
H is an MPO

The ground state can be (approximately) represented as ~ 1D quantum many-body system
an MPS with low bond dimension _
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DMRG for 1D system

Classical 1D spin chain (Ising model):

l
o €{—1,1}"

Quantum 1D system:

H = Z hiiv1
7

h; i+, only acts on qubitsi and i + 1

QIR ®IQhRIQ QI
| |

1 —1 n—i—1
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DMRG for 1D system

Theorem (Hastings, 2007; Arad-Kitaev-Landau-Vazirani, 2013).

Consider a 1D quantum spin chain of N sites, each of local dimension d, with a Hamiltonian H =

v hii+1 where each h; ;. acts on nearest neighbors, hi,iﬂ” < 1, and the Hamiltonian has a

spectral gap A > 0 above the ground state.

Then, there exists an MPS approximation |yps) to the ground state |1),) such that
lmps) — [Wodll < 1/poly(n)

1 2
with bond dimension y = exp (0 (A_§ logs n))

Landau-Vazirani-Vidick; Arad-Landau-Vazirani-Vidick: polynomial-time algorithms
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