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We’ve seen several tensor decomposition algorithms:

• Jennrich’s algorithm (simultaneous diagonalization)

• Tensor power method

• Alternating least squares

• Flattening-based higher-order tensor decomposition

However, the equations for tensors are too long and involves too many indices and ∑’s, e.g.,

𝑇𝑎𝑏𝑐
′ = ෍

𝑎′𝑏′𝑐′

෍

𝑖

𝜆𝑖 𝑢𝑖 𝑎′ 𝑢𝑖 𝑏′ 𝑢𝑖 𝑐′𝑊𝑎′𝑎𝑊𝑏′𝑏𝑊𝑐′𝑐

Today: we’ll see a diagrammatic language for tensors---tensor networks



Today’s plan
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• Tensor diagram notations

• Tensor networks

• Quantum application: classical simulation of quantum circuits

• Tensor network algorithms



Tensor diagrams
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Roger Penrose



Tensor diagram rule #1
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Tensors are notated by shapes (usually filled or shaded), and tensor indices are notated by lines (or 

“legs”) emanating from these shapes.



Tensor diagram rule #2
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Connecting two index lines implies a contraction, or summation over the connected indices.

𝑢 𝑣 ෍

𝑖

𝑢𝑖𝑣𝑖 = 𝑢, 𝑣

𝑀 𝑣
𝑖

෍

𝑖

𝑀𝑗𝑖𝑣𝑖 = 𝑀𝑣

𝐴 𝐵
𝑖 𝑗

෍

𝑘

𝐴𝑖𝑘𝐵𝑘𝑗 = 𝐴𝐵

𝑇 𝑊
𝑗

𝑖𝑥
𝑦

𝑧

෍

𝛼

𝑇𝑥𝑦𝑧𝛼𝑊𝑖𝑗𝛼

=

=

=

=



Tensor diagram rule #2

September 10, 2025 6

Connecting two index lines implies a contraction, or summation over the connected indices.

(can also involve loops)

𝑢 ෍

𝑖

𝑢𝑖𝑢𝑖 = 𝑢 2=

𝐴 𝐵
෍

𝑖𝑗

𝐴𝑖𝑗𝐵𝑗𝑖 = tr 𝐴𝐵=

𝑊
𝑗

𝑖𝑥

෍

𝛼,𝛽

𝑇𝑥𝛽𝛽𝛼𝑊𝑖𝑗𝛼=𝑇 partial trace



Diagrammatic proof of the trace identity
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𝐴

𝐵

𝐴

𝐵⊤

𝐵 𝐴𝐴 𝐵

= = =

𝐴 𝐵 𝐶 𝐴 𝐵

𝐶

𝐶 𝐴 𝐵

tr 𝐴𝐵 = tr[𝐵𝐴]

tr 𝐴𝐵𝐶 = tr 𝐶𝐴𝐵

= =



Tensor products
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𝑢

𝑣

= 𝑢 ⊗ 𝑣

𝐴

= 𝐴 ⊗ 𝐵

𝐵



Grouping indices
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= 𝑢 ⊗ 𝑣

𝑢
𝑖

𝑣
𝑗



Grouping indices
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= vec 𝑢 ⊗ 𝑣𝑢
𝑖

𝑣
𝑗 𝑖𝑗

=

𝐴
𝑖 𝑗 𝑖𝑗

= vec 𝐴=

=



Splitting indices
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𝑑1𝑑2 𝑑1 𝑑2



Some special notations
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identity diagonal matrix isometry

= ≠

=

SVD    𝐴 = 𝑈Σ𝑉†



Tensor networks
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Tensor networks are factorizations of very large tensors into networks of smaller tensors

෍

𝛼𝛽𝛾𝜃𝛿

𝐴𝑖𝛼𝐵𝛼𝑗𝛽𝐶𝛽𝑘𝛾𝐷𝛾ℓ𝜃𝐸𝜃𝑚𝛿𝐹𝛿𝑛 = 𝑇𝑖𝑗𝑘𝑙𝑚𝑛

𝑖 𝑗 𝑘 ℓ 𝑚 𝑛

𝛼 𝛽 𝛾 𝜃 𝛿
𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

Q: Does the order of contractions matter?

A: No, mathematically. Yes, computationally!



Computational costs of tensor contraction
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• Contraction path 1: 

    

• Contraction path 2:

𝑖 𝑗 𝑘

𝒪 𝑑2 𝒪 𝑑2

𝒪 𝑑2

𝒪 𝑑3 𝒪 𝑑2

𝒪 𝑑3



Computational costs of tensor contraction
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Fact.   The computational cost for contracting an edge with dimension 𝑑 is:

𝒪 𝑑 ⋅ ෑ

𝑘:open edges

𝑑𝑘

𝒪 𝑑6



Computational costs of tensor contraction
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Fact.   The computational cost for contracting an edge with dimension 𝑑 is:

𝒪 𝑑 ⋅ ෑ

𝑘:open edges

𝑑𝑘

⋯

⋯

𝑛 tensors

𝜒

𝑑

𝜒 𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝜓 𝜓=



Contracting a ladder: left-to-right then top-to-
bottom
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𝜒

𝑑

𝜒 𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝑑

𝜒 𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝑑

𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝑑 𝑑 𝑑 𝑑
𝜒 𝜒 𝜒 ⋯

𝜒2𝑑2 𝜒2𝑑3
𝜒𝑑4

𝜒𝑑𝑛 total cost = 𝒪 𝑑𝑛



Contracting a ladder: staggered
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𝜒

𝑑

𝜒 𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝜒 𝜒

𝑑 𝑑 𝑑
𝜒 𝜒 𝜒

𝜒

𝑑 𝑑 𝑑
𝜒 𝜒

𝑑 𝑑
𝜒 𝜒 ⋯

𝜒2𝑑 𝜒3𝑑 𝜒3𝑑

𝜒3𝑑 total cost = 𝒪 𝑛𝜒3𝑑 ≪ 𝑑𝑛

𝜒 𝜒

𝜒

𝜒 𝜒



Tensor network contraction is hard
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Theorem. Tensor network contraction is #P-complete.

Proof. 

• Encode #SAT as a tensor network: its contraction equals the number of satisfying assignments

∀ 𝑓 ∈ 0,1 𝑛 → 0,1 𝑇𝑓 ≔ ෍

𝑥∈ 0,1 𝑛

𝑓 𝑥 𝑥 ∈  0,1 ⊗𝑛 ⊗ 0,1

OR

|0⟩ |1⟩
|1⟩

AND

|0⟩ |1⟩
|0⟩



Tensor network contraction is hard
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Theorem. Tensor network contraction is #P-complete.

OR

Example: 𝑓 𝑥 = 𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ (𝑥2 ∨ 𝑥3)

𝑥1 𝑥2 𝑥3 𝑥4

NOT

OR

OR

AND

𝑇𝑓

𝑥1 𝑥2 𝑥3 𝑥4



Tensor network contraction is hard
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Theorem. Tensor network contraction is #P-complete.

• How to count the solutions?

• Let + ≔ 0 + 1

• + ⊗𝑛 = 0 + 1 ⊗𝑛 = ∑𝑥∈ 0,1 𝑛 𝑥

• 𝑇𝑓 + , … , + , 1 = #satisfiable assignments for 𝑓

• If there exists a polynomial time algorithm for tensor contraction, then there is also a polynomial time 

algorithm for #SAT, which is #P-complete

𝑇𝑓
+ =

1
1

+ ⊗ + = 00 + 01 + 10 + 11 |+⟩ |+⟩ |+⟩ |+⟩

1



Contraction complexity
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A tensor network can be described as an undirected graph 𝐺 = 𝑉, 𝐸 :

• Vertices ⟷ tensors, edges ⟷ indices

• Contraction of an edge 𝑒 removes 𝑒 and replaces its end vertices (or vertex) with a single vertex

A contraction ordering 𝜋 is an ordering of all edges:

𝜋1, 𝜋2, … , 𝜋 𝐸 = 𝐸

• The complexity of 𝜋 is the maximum degree of a merged vertex during the contraction process

Contraction complexity of 𝐺, denoted by cc(𝐺), is the minimum complexity of a contraction ordering

How to determine cc 𝐺 ?

The cost of contracting the TN is ∼ 𝑑𝒪 cc 𝐺  or exp 𝒪 cc 𝐺  (for constant dimensions)



Contraction complexity: basic properties
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Claim. It holds that 

Δ 𝐺 − 1 ≤ cc 𝐺 ≤ 𝐸 − 1

where Δ 𝐺  is the maximum degree of a vertex in 𝐺

Proof.

• Since a merged vertex cannot be connected to more than 𝐸 − 1 edges, so cc 𝐺 ≤ 𝐸 − 1

• When any edge incident to a vertex of degree ∆(𝐺) is removed, the resulting merged vertex is incident to 

at least ∆ 𝐺 − 1 edges. Thus, Δ 𝐺 − 1 ≤ cc 𝐺



Contraction complexity
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Theorem.

Given a tensor network with 𝑁 tensors and underlying graph 𝐺, the contraction time is

𝒪(𝑁 exp(tw(𝐺)))

where tw 𝐺  is the tree-width of 𝐺 (assuming all indices are of 𝒪 1  dimensions)

Tree decomposition is a way to 

measure how tree-like a graph is



Tree decomposition
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a

c

b

d

How to transform this graph to a tree?

abcd

• Trivial: Group of vertices 

(bag)

ab

cd

• Slightly non-trivial:

Does not reflect the structure of 
the original graph

We require:

∀ 𝑒 = 𝑖, 𝑗 ∈ 𝐸, there exists a bag in 

the tree that contains both 𝑖 and 𝑗



Tree decomposition
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a

c

b

d

How to transform this graph to a tree?

abc cd

• Another choice:
Check-list

• Tree? 

• Contains all vertices? 

• Contains all edges? 

• Minimize the max bag size 

abcd

• Trivial:

max
𝑢∈𝑇

𝐿𝑢 = 4

max
𝑢∈𝑇

𝐿𝑢 = 3



Tree decomposition
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a

c

b

d

How to transform this graph to a tree?

abc cd

• Another choice:
Check-list

• Tree? 

• Contains all vertices? 

• Contains all edges? 

• Minimize the max bag size 

• Smaller bag?

max
𝑢∈𝑇

𝐿𝑢 = 3

ac ab

bc cd

forget the 
vertex b



Tree decomposition
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A tree decomposition of a graph 𝐺 = 𝑉, 𝐸  is a tree of 𝑁 nodes 𝑢1, … , 𝑢𝑁, with a set 𝐿𝑢𝑖
⊂ 𝑉 

corresponding to each node 𝑢𝑖, such that:

1. Vertex coverage: every vertex of 𝐺 belongs to at least one set

2. Edge coverage: for every edge in 𝐺, there is a set containing both its endpoints

3. Consistency: for every vertex 𝑣 in 𝐺, the set of bags containing 𝑣 induces a connected subgraph

Formally, if 𝑣 ∈ 𝐿𝑢𝑖
∩ 𝐿𝑢𝑗

, then 𝑣 ∈ 𝐿𝑢𝑘
 for all nodes 𝑢𝑘  on the 𝑢𝑖 → 𝑢𝑗  path

The width of a tree decomposition is the maximum size of a bag

The tree-width of a graph G is the minimum width of any tree decomposition of 𝐺 minus one



Tree decomposition
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Tree has tree-width one:

a

b c

d e

a

b c

e

bd

d

be

ab ac



Contraction complexity
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Theorem (Markov-Shi, 2008).

Given a tensor network with 𝑁 tensors and underlying graph 𝐺, the contraction time is

𝒪(𝑁 exp(tw(𝐺)))

where tw 𝐺  is the tree-width of 𝐺

Proof strategy:

1. Prove that cc 𝐺 = tw 𝐺⋆ , where 𝐺⋆ is the line graph of 𝐺

2. Use tw(𝐺) to bound tw 𝐺⋆



Line graph
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The line graph of 𝐺 = 𝑉, 𝐸 , denoted as 𝐺⋆, has vertex set 𝑉 𝐺⋆ = 𝐸, and edge set

𝐸 𝐺⋆ = 𝑒1, 𝑒2 : 𝑒1, 𝑒2 ∈ 𝐸 and 𝑒1 ∩ 𝑒2 ≠ ∅

a

c

b

d

ac ab

bc cd



Contraction complexity equals tree-width
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Proposition.   

For any graph 𝐺 = (𝑉, 𝐸), cc(𝐺) = tw 𝐺⋆ . Furthermore, given a tree decomposition of 𝐺⋆ of 

width 𝑑, there is a deterministic algorithm that outputs a contraction ordering 𝜋 with cc 𝜋 ≤ 𝑑 in 

polynomial time.

Proof ideas:

• When we contract an edge 𝑒 ∈ 𝐸, it corresponds to removing a vertex in 𝐺⋆

𝑒
𝑢

Clique

𝐺 𝐺⋆

𝑒

deg𝐺 𝑢 = deg𝐺⋆ 𝑒



Contraction complexity equals tree-width
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Proposition.   

For any graph 𝐺 = (𝑉, 𝐸), cc(𝐺) = tw 𝐺⋆ . Furthermore, given a tree decomposition of 𝐺⋆ of 

width 𝑑, there is a deterministic algorithm that outputs a contraction ordering 𝜋 with cc 𝜋 ≤ 𝑑 in 

polynomial time.

Proof ideas:

• When we contract an edge 𝑒 ∈ 𝐸, it corresponds to removing a vertex in 𝐺⋆, and connect its neighbors 

as a clique

• The degree of the merged vertex in 𝐺 = the degree of 𝑒 in 𝐺⋆

• These operations exactly correspond to the elimination width (or induced width) of 𝐺⋆

• Graph theory tells that elimination width = tree-width



Tree-width of 𝐺 and 𝐺⋆
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Lemma.   For any graph 𝐺 of maximum degree ∆(𝐺),

Τtw 𝐺 − 1 2 ≤ tw 𝐺⋆ ≤ Δ 𝐺 tw 𝐺 + 1 + 1

• So, for a bounded-degree graph 𝐺, tw 𝐺 ≃ tw 𝐺⋆

How to find the tree decomposition?

• Robertson-Seymour: There is a deterministic algorithm that given a graph 𝐺 outputs a tree 

decomposition of 𝐺 of width 𝒪(tw(𝐺)) in time 𝑉 𝒪 1 exp 𝒪 tw 𝐺 .



Tensor network contraction algorithm
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1. Apply the Robertson-Seymour algorithm to compute a tree decomposition

2. Find the contraction ordering 𝜋 using the proposition

3. Contract the tensor network according to 𝜋

The first and the third steps take 𝑁𝒪 1 exp 𝒪 tw 𝐺  time, and the second step is cheap 



Application: Quantum circuit simulation
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Theorem.

Let 𝐶 be a quantum circuit with 𝑇 gates and whose underlying circuit graph is 𝐺𝐶 . Then 𝐶 can be simulated 

deterministically in time 𝑇𝒪 1 exp 𝒪 tw 𝐺𝐶 .



Google’s supremacy experiment
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Tensor network algorithms



Matrix product states (MPS) / tensor trains
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How to use express a large tensor using as few bits as possible?

𝑑

𝑑6 parameters

𝜒

≤ 6𝜒2𝑑 parameters

𝑇𝑖𝑗𝑘𝑙𝑚𝑛 = ෍

𝛼1,…,𝛼5

𝐴𝛼1
𝑖 𝐴𝛼1𝛼2

𝑗
𝐴𝛼2𝛼3

𝑘 𝐴𝛼3𝛼4
𝑙 𝐴𝛼4𝛼5

𝑚 𝐴𝛼5
𝑛

visible dimension

bond dimension

𝑖 𝑗 𝑘 𝑙 𝑚 𝑛

Cost: 𝒪 𝑁𝜒2

site



Inner product of two MPSs
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Contracting a 
ladder TN

Cost: 𝒪 𝑁𝜒3𝑑



Symmetry in MPS

September 10, 2025 41

• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′

= ෍

𝑖∈ 𝑑

𝐴𝑛
𝑖 †

𝐴𝑛
𝑖 = 𝐼 ∀ 𝑛 ∈ 𝑁 − 1



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Left) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′

= ෍

𝑖∈ 𝑑

𝐴𝑁
𝑖 , 𝐴𝑁

𝑖 = 𝑇 𝐹
2



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Right) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′

= ෍

𝑖∈ 𝑑

𝐴𝑛
𝑖 𝐴𝑛

𝑖 †
= 𝐼 ∀ 𝑛 ∈ {2, … 𝑁}



Symmetry in MPS
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• Inserting invertible matrices 𝑋 and 𝑋′ does not change the whole tensor

• The MPS form is not unique

(Center) canonical form:

𝐴𝑋 𝑋−1 𝑌 𝑌−1 𝑍 𝑍−1

𝐴′

left canonical right canonical



Canonicalize an MPS
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Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

Short answer: QR!
𝐴1

𝐴1

QR 

decomposition

𝐵1

𝐴2

𝐴2

𝐴2
′

𝐵1

𝐵1
†

=



Canonicalize an MPS
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Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

Short answer: QR!
𝐵1 𝐴2

′

𝐴2
′

Grouping
𝐴2

′

𝑑𝜒 × 𝜒

QR 

decomposition

𝐴3
′

Splitting

𝐵2

𝐵2

𝑄1

𝑄2

⋮
𝑄𝑑

≡ 𝐵2
𝑖 ≔ 𝑄𝑖  ∀ 𝑖 ∈ 𝑑

𝐼 = 𝑄†𝑄 = ෍

𝑖=1

𝑑

𝑄𝑖
†𝑄𝑖 = ෍

𝑖=1

𝑑

𝐵2
𝑖 †

𝐵2
𝑖

𝐴3

𝐴3



Canonicalize an MPS
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Given an arbitrary MPS, how to make it in the (left/right/center) canonical form?

• Apply the same procedure from right to left to make the MPS right canonical

• For center canonical, we left-canonicalize the first half and right-canonicalize the second half

Short answer: QR!
𝐴𝑁



Center-canonicalize an MPS
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For center canonical form, we left-canonicalize the first half and right-canonicalize the second half

Grouping SVD

Right canonical form will 
be preserved

(homework)

Splitting
As in the left-canonical case, 
this site is left-canonical



Center-canonicalize an MPS
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For center canonical form, we left-canonicalize the first half and right-canonicalize the second half

Grouping SVD

Right canonical form will 
be preserved

(homework)

Splitting
As in the left-canonical case, 
this site is left-canonical

Resulting MPS:



DMRG: setup
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We want to find the minimum eigenvalue of a huge matrix 𝐻 (say 2𝑁-by-2𝑁)

𝐻

𝑁 legs



DMRG: setup
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We want to find the minimum eigenvalue of a huge matrix 𝐻 (say 2𝑁-by-2𝑁)

Assumptions: 

• 𝐻 has a “low-rank” representation; more formally, 𝐻 is a matrix product operator (MPO)

• The minimum eigenvector can also be (approximately) represented as an MPS

𝐻 =

𝜓0 ≈



DMRG: setup
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arg min

How to solve this non-linear optimization problem?
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Core idea: alternating minimization!

arg min
=



DMRG: algorithm

September 10, 2025 58

Core idea: alternating minimization!

Low-dimensional (2𝜒2-dim) eigenvalue problem

arg min
=

if center canonical

=
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Core idea: alternating minimization!

Low-dimensional (2𝜒2-dim) eigenvalue problem

left sweep + right sweep + left sweep + right sweep + ⋯ (until converge)

arg min
=

=
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• This is a purely heuristic approach, but super powerful in practice!
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• This is a purely heuristic approach, but super powerful in practice!

• Widely used in quantum many-body physics and quantum chemistry

• Quantum language:

➢ 𝐻: the Hamiltonian, which describes the dynamics of a physical system

➢ The minimum eigenvalue: ground state energy

➢ The minimum eigenvector: ground state

➢ These capture key properties of the system at very low temperature

• When DMRG is effective?

• 𝐻 is an MPO

• The ground state can be (approximately) represented as 

an MPS with low bond dimension

1D quantum many-body system
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• Classical 1D spin chain (Ising model):

• Quantum 1D system:

𝐻Ising 𝜎 = − ෍

𝑖

𝐽𝑖𝜎𝑖𝜎𝑖+1

𝜎 ∈ −1,1 𝑛

𝐻 = ෍

𝑖

ℎ𝑖,𝑖+1

ℎ𝑖,𝑖+1 only acts on qubits 𝑖 and 𝑖 + 1

𝐼 ⊗ 𝐼 ⊗ ⋯ ⊗ 𝐼 ⊗ ℎ ⊗ 𝐼 ⊗ ⋯ ⊗ 𝐼

𝑖 − 1 𝑛 − 𝑖 − 1
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Theorem (Hastings, 2007; Arad-Kitaev-Landau-Vazirani, 2013).

Consider a 1D quantum spin chain of 𝑁 sites, each of local dimension 𝑑, with a Hamiltonian 𝐻 =

∑𝑖=1
𝑁−1 ℎ𝑖,𝑖+1 where each ℎ𝑖,𝑖+1 ​acts on nearest neighbors, ℎ𝑖,𝑖+1 ≤ 1, and the Hamiltonian has a 

spectral gap Δ > 0 above the ground state.

Then, there exists an MPS approximation 𝜓MPS  to the ground state 𝜓0  such that

𝜓MPS − 𝜓0 ≤ Τ1 poly 𝑛

with bond dimension 𝜒 = exp 𝒪 Δ−
1

3 log
2

3 𝑛

• Landau-Vazirani-Vidick; Arad-Landau-Vazirani-Vidick: polynomial-time algorithms
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